

Improving family caregiver understanding of range of motion exercises for community-based stroke care: A pre-experimental study within the clinical pathway

Mira Asmirajanti^{1,*}, Rini Handayani², Dwi Nurmawaty², Yulhendri³

ABSTRACT

¹Nursing Study Program, Faculty of Health Sciences, Universitas Esa Unggul, Jakarta, Indonesia

²Public Health Study Program, Faculty of Health Sciences, Universitas Esa Unggul, Jakarta, Indonesia

³Information System Study Program, Faculty of Computer Science, Universitas Esa Unggul, Jakarta, Indonesia

*Corresponding author:
Mira Asmirajanti;
Nursing Study Program, Faculty of Health Sciences, Universitas Esa Unggul, Jakarta, Indonesia;
miraasmirajanti@esaunggul.ac.id

Received: 2025-06-11
Accepted: 2025-09-28
Published: 2026-01-19

INTRODUCTION

Stroke remains a major health issue worldwide and in Indonesia, characterized by high morbidity and mortality rates. Data from the Global Burden of Disease 2019 reveal a 31.97% increase in stroke prevalence compared to 1990, despite a relative decrease in mortality rates.¹ Every minute after a stroke, approximately 1.9 million brain cells can die, leading to severe neurological damage. In Indonesia, stroke is the leading cause of disability, accounting for 11.2%, and contributes to 18.5% of deaths. National data by 2023 recorded a stroke prevalence of 8.3 per 1,000 population, with funding by the National Health Insurance reaching Rp 5.2 trillion.^{2,3}

Stroke causes motor function impairment, cognitive disorders, and dependence in daily activities, necessitating consistent long-term rehabilitation.⁴ A study at Bekasi General Hospital revealed that most patients experienced muscle weakness, speech disorders, and vision impairments, necessitating assistance with daily activities such as eating and drinking, personal hygiene, elimination, ambulation, mobility, and rest.⁵ However, many family caregivers who care for patients lack adequate knowledge about post-stroke care and complication prevention, resulting in suboptimal care quality at home.⁶ Other studies have found that many families of stroke patients still lack a clear understanding of the basic principles of post-stroke home care,

including movement exercises and joint stiffness prevention.⁷

Various promotional and preventive efforts have been made to raise public awareness, including lifestyle changes and control of stroke risk factors.⁸ The theme of World Stroke Day 2024, "Be Greater Than Stroke," emphasizes the need for a proactive approach to stroke prevention through healthy living. However, stroke patient management in the community still faces significant challenges, particularly in preventing long-term complications.⁹ The American Heart Association recommends that post-stroke rehabilitation begin as early as possible, with families actively involved as part of the care team to ensure continuity of exercises at home.¹⁰

One recommended non-pharmacological intervention is range of motion (ROM) exercises, which are beneficial for maintaining joint flexibility, improving muscle strength, and preventing contracture complications.¹¹ Scientific evidence reveals that ROM, both active and passive, can accelerate motor function recovery when performed regularly and according to procedure.¹² A systematic review highlighted that ROM exercises were among the most effective rehabilitation therapies during the early phase of stroke recovery, as they could enhance neural plasticity and peripheral circulation without causing excessive fatigue for patients.¹³ However, limited access to rehabilitation in the community poses a barrier to the sustainability of recovery programs.

Nurses play a crucial role in empowering family caregivers through structured education and supervision in accordance with service standards. A clinical pathway-based approach can provide a structured framework for delivering care and clear, step-by-step guidelines for stroke patient rehabilitation. However, the implementation of family-based clinical pathways in stroke rehabilitation remains under-explored, particularly in the context of limited primary care services in Indonesian communities. Therefore, this study aimed to analyze the increase in family caregivers' understanding of ROM exercises after receiving training. The results of this study were expected to provide preliminary evidence to support the development of non-digital, clinical pathway-based guidelines as a strategy to prevent stroke complications and improve rehabilitation quality in the community.

METHODS

This study used a pre-experimental design with a one-group pretest-posttest approach, conducted in July 2025 in the working area of the Tambora Community Health Center, West Jakarta. The objective of the study was to analyze the improvement in family caregivers' understanding of ROM exercises after receiving training. A total of 25 respondents were chosen utilizing consecutive sampling by families of stroke patients who were in the post-stroke phase of at least one month.

Inclusion criteria were willingness to participate, being a family member of a stroke patient, ability to communicate bidirectionally, and absence of cognitive impairment. The exclusion criteria in this study included family caregivers who declined follow-up observations and patients who experienced a decline in clinical condition during the study period. This research received ethical approval from the Research Ethics Committee of Universitas Esa Unggul (number: 0925-06.016/DPKE-KEP/FINAL-EA/UEU/VI/2025). All respondents who agreed to participate were required to sign an informed consent form after receiving a clear explanation of the study's objectives, benefits, and procedures.

The research instruments comprised a structured questionnaire designed to assess caregivers' knowledge of stroke, including its symptoms, prevention, and rehabilitation, as well as a ROM assessment to evaluate their level of understanding. Additionally, muscle strength was evaluated using manual muscle testing (MMT) observation sheets, while the Katz activities of daily living (ADL) Index was utilized to determine the patients' level of functional independence. All instruments were tested for validity and reliability, with a Cronbach's alpha value of 0.70 for the knowledge questionnaire. The item validity test showed *r*-values ranging from 0.53 to 0.89, which were higher than the *r*-table value of 0.37. These results indicate that the instruments are valid and reliable for use in the study.

The research procedure was conducted in three stages. In the first stage, the researchers conducted a pretest to assess caregivers' knowledge using a questionnaire, patients' muscle strength using MMT, and patients' level of independence using the Katz Index. In the second stage, individual training interventions were carried out with family caregivers at the patients' homes, including explanations about stroke, the benefits of ROM exercises, demonstrations of techniques according to standard operating procedures (SOP), and hands-on ROM practice by the family. Caregivers were instructed to regularly perform ROM exercises with the patients. In the third stage, one

week after the training, the researchers conducted follow-up supervision at the patients' homes to perform a posttest with the family caregivers, reassess patients' muscle strength using MMT, and evaluate patients' independence using the Katz Index. In addition, exercise adherence was assessed using a simple observation sheet with three categories: regular, occasional, and non-adherence. The data were analyzed using the Wilcoxon test with a significance level of *p* < 0.05 to determine significant differences between pretest and posttest scores.

RESULTS

This study involved 25 participants who served as caregivers. The characteristics of the respondents, caregivers' knowledge before and after training, muscle strength of stroke patients before and after family training, level of independence of stroke patients before and after family training, and the Wilcoxon analysis of the effect of family training on patient independence and muscle strength are presented in the tables below.

As shown in **Table 1**, the majority of respondents were female (72%), aged \geq 45 years (64%), had a relationship as the patient's child (64%), and had been caring for the patient for \geq 6 months (60%). **Table 2** illustrates that before training, most respondents had adequate knowledge (88%), while only 12% demonstrated good knowledge. Following the training, the proportion of respondents with good knowledge increased to 56%, whereas those with adequate knowledge decreased to 44%.

The findings presented in **Table 3** indicate that muscle strength improved among stroke patients after training. The percentage of patients with normal muscle strength increased by 4% to 20%, while those capable of performing movements without resisting gravity decreased from 32% to 12%. Similarly, **Table 4** demonstrates an improvement in patient independence following family training, with the proportion of totally independent patients increasing by 20% to 32%, and the proportion of highly dependent patients decreasing from 20% to 4%. **Table 5** further shows that the Wilcoxon Signed Rank Test revealed significant differences between

Table 1. Characteristics of 25 respondents

Variable	n (%)
Gender	
Male	7 (28.0)
Female	18 (72.0)
Age	
< 45	9 (36.0)
≥ 45	16 (64.0)
Relationship by Patient	
Spouse	7 (28.0)
Children	16 (64.0)
Other	2 (8.0)
Length of treatment	
< 6 months	10 (40.0)
≥ 6 months	15 (60.0)

n, frequency of participants; %, percentage of participants

Table 2. Data on 25 caregivers' knowledge before and after training

Variable	Pre-test n (%)	Post-test n (%)
Adequate	22 (88.0)	11 (44.0)
Good	3 (12.0)	14 (56.0)

n, frequency of participants; %, percentage of participants

pre-test and post-test results across all variables, indicating that family training effectively increased caregiver knowledge ($Z = -4.435$; $p < 0.001$), improved patient muscle strength ($Z = -2.782$; $p < 0.001$), and enhanced patient independence as measured by the Katz Index ($Z = -2.570$; $p < 0.001$).

DISCUSSION

The results of this study reveal that providing knowledge to family caregivers facilitated by nurses is effective in improving family understanding, patient muscle strength, and patient independence in performing daily activities. These findings align with the studies that emphasize that family involvement in stroke rehabilitation plays a crucial role in accelerating motor function recovery and preventing post-stroke complications. Active family involvement also strengthens the patient's emotional support system, improves adherence to

Table 3. Muscle strength of 25 stroke patients before and after family training

Muscle Strength	Pre-test n (%)	Post-test n (%)
No contraction	3 (12.0)	0 (0.0)
Muscle twitching	4 (16.0)	1 (4.0)
Movement devoid of resisting gravity	8 (32.0)	3 (12.0)
Movement against gravity	6 (24.0)	7 (28.0)
Movement against light resistance	3 (12.0)	9 (36.0)
Normal strength	1 (4.0)	5 (20.0)

n, frequency of participants; %, percentage of participants

Table 4. Level of independence of 25 stroke patients before and after family training

Level of Independence	Pre-test n (%)	Post-test n (%)
Most dependent	5 (20.0)	1 (4.0)
Moderately dependent	2 (8.0)	3 (12.0)
Moderate	4 (16.0)	2 (8.0)
Mildly dependent	6 (24.0)	3 (12.0)
Minimal dependence	3 (12.0)	8 (32.0)
Total independent	5 (20.0)	8 (32.0)

n, frequency of participants; %, percentage of participants

exercise, and helps reduce the risk of post-stroke depression.¹⁴

The study also found that many respondents previously lacked understanding of stroke and its symptoms. This is important because ischemic stroke is caused by a disruption in blood supply to the brain, while hemorrhagic stroke occurs due to the rupture of brain blood vessels.¹⁵ Both conditions result in brain cells being deprived of oxygen and nutrients, leading to damage that can cause paralysis, speech disorders, and other bodily function impairments.¹⁶ This lack of understanding prevents families from recognizing the importance of early detection and ongoing rehabilitation.

Most respondents in this study also demonstrated limitations in performing ADL, such as eating, personal hygiene, elimination, and mobility. This is consistent with the findings that explained that ADL impairments are a consequence of brain damage caused by stroke, with variations depending on the location and severity of the lesion.¹⁷ In addition to physical barriers, stroke patients

Table 5. Wilcoxon analysis of the effect of family training on patient independence and muscle strength (n=25)

Variable	Z	P-value
Family knowledge (pre-post)	-4.435b	0.001
Muscle strength (pre-post)	-3.782b	0.001
Katz Index (pre-post)	-3.570b	0.001

often experience emotional issues, sleep disorders, and a decline in quality of life.¹⁸ Therefore, comprehensive rehabilitation and family support are essential to ensure optimal recovery.

Unfortunately, research findings also reveal that most patients only undergo routine treatment and follow-up but do not participate in rehabilitation programs or regular exercise. However, post-stroke rehabilitation is very important to improve quality of life.¹⁹ Physical therapy, occupational therapy, speech therapy, and structured exercise have benefits for improving motor function and accelerating recovery.²⁰ Additionally, managing risk factors through medication, a healthy diet, and lifestyle modifications remains an integral part of preventing recurrence.²¹

Families caring for stroke patients face significant challenges in adapting to the patient's condition. Higher levels of disability have been shown to increase the family's burden, both physically and psychologically.²² Therefore, interventions such as skill-building, psychoeducation, and emotional support are essential.²³ In this context, nurses play a crucial role as educators and facilitators to enable families to support patients' recovery optimally at home.

This study shows that training caregivers can help motivate patients to perform ROM exercises, leading to improved muscle strength and greater independence in ADL.²⁴ Family involvement also improves patient compliance, making rehabilitation more effective.²⁵ In addition to supporting physical rehabilitation, family education also plays a crucial role in preventing stroke complications. Families can help patients maintain a healthy diet, such as increasing consumption of vegetables, fruits, lean proteins, and fiber. As a result, caregivers become the first line of defense in ensuring the continuity of care and preventing stroke recurrence.²⁶ Mechanistically, increased muscle strength through ROM exercises occurs due to the activation of motor units caused by repetitive movements. ROM is effective in improving muscle strength and motor function. Regular monitoring remains crucial for assessing the effectiveness of rehabilitation programs and adapting them to individual conditions.²⁷

As a practical implication, a structured clinical pathway model can be proposed as a guide for patients and their families. This model includes understanding stroke conditions, appropriate management, and the importance of rehabilitation and exercise, as well as strategies for preventing recurrent attacks. With this guidance, patients and families will be better able to make informed decisions, adopt a healthy lifestyle, and access healthcare facilities as needed. Thus, this intervention not only improves patients' quality of life but also strengthens families' capacity as an integral part of the rehabilitation team.

Although this study provided encouraging findings, several limitations should be acknowledged. The one-group pretest–posttest design without a control group limits the ability to establish a causal relationship between the intervention and outcomes. The relatively small sample size also restricts the generalizability of the results to a broader population. Therefore, further research using an experimental design with a larger sample size and a longer observation period is strongly recommended. In addition, the development of non-digital educational media, such as guidebooks, leaflets, and posters, should be integrated into community nursing programs. These

efforts would help strengthen community-based rehabilitation services and support the achievement of a healthier Indonesia.²⁸

CONCLUSION

Providing education on ROM exercises to family caregivers, facilitated by nurses, has proven effective in improving muscle strength among stroke patients while also supporting their independence in daily activities. This intervention highlights the crucial role of family empowerment in the success of home-based rehabilitation. The findings of this study offer preliminary evidence that caregiver training can serve as a fundamental component in developing community-based clinical pathway guidelines for stroke rehabilitation. This aligns with efforts to strengthen primary nursing care services and prevent stroke-related complications.

ETHICAL CLEARANCE

This study has obtained ethical approval by number: 0925-06.016/DPKE-KEP/FINAL-EA/UEU/VI/2025.

CONFLICT OF INTEREST

The researcher declares that there are no conflicts of interest associated with the conduct, analysis, or reporting of this study.

FUNDING

This research was funded by the Directorate of Research and Community Service, Directorate General of Research Strengthening and Development, Ministry of Research, Technology, and Higher Education, in accordance with the research contract number 081/SP-PFR/VI/2025.

AUTHOR CONTRIBUTIONS

MA designed the study, collected and processed the data, and drafted the initial manuscript. RH, DN, and Y contributed to study design and manuscript revision.

REFERENCES

- Feigin VL, Brainin M, Norrving B, Martins SO, Pandian J, Lindsay P, F Grupper M, Rautalin I. World stroke organization: global stroke fact sheet 2025. *International Journal of Stroke*. 2025 Feb;20(2):132-44.
- Amalia L. Does the implementation of a national health insurance program result in rationing care for ischemic stroke management? analysis of the Indonesian national health insurance program. *Risk Management and Healthcare Policy*. 2023 Dec 31:455-61.
- Adityasiwi GL, Budiono I, Zainafree I, Cahyati WH. Stroke in Indonesia: An epidemiological overview. *Physical Therapy Journal of Indonesia*. 2025 Jun 4;6(1):70-3.
- Li X, He Y, Wang D, Rezaei MJ. Stroke rehabilitation: from diagnosis to therapy. *Frontiers in neurology*. 2024 Aug 13;15:1402729.
- Asmirajanti M, Azizah AH, Silaswati S. Asmirajanti M, Azizah AH, Silaswati S. Identification of clinical pathway models to prevent complications and improve the quality of life of stroke patients. *Jurnal Aisyah: Jurnal Ilmu Kesehatan*. 2023;8(3).
- Asmirajanti M, Azizah AH, Mustikawati IS, Romadhon A, Bahraini D, Pratama A, Syahputra AD. Peningkatan pengetahuan keluarga terhadap perawatan pasien di rumah dalam mencegah komplikasi pada pasien stroke dengan implementasi telenursing. *Jurnal Abdi Insani*. 2024 Sep 28;11(3):1162-8.
- Deepradit S, Powwattana A, Lagampan S, Thiangtham W. Effectiveness of a family-based program for post-stroke patients and families: A cluster randomized controlled trial. *International Journal of Nursing Sciences*. 2023 Oct 1;10(4):446-55.
- Kepmenkes. Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07/Menkes/394/2019 Tentang Pedoman Nasional Pelayanan Kedokteran Tata Laksana Stroke. 2019.
- Feigin VL, Brainin M, Norrving B, Martins SO, Pandian J, Lindsay P, F Grupper M, Rautalin I. World stroke organization: global stroke fact sheet 2025. *International Journal of Stroke*. 2025 Feb;20(2):132-44.
- Ifejika NL, Awosika OO, Black T, Duncan PW, Harvey RL, Katz DI, Kimberley TJ, Lutz B, O'Neil F, Stein J, Yalla Pragada AV. Improving access to stroke rehabilitation and recovery: a policy statement from the American Heart Association/American Stroke Association. *Stroke*. 2025 Sep;56(9):e218-33.
- Onose G, Anghelescu A, Blendea D, Ciobanu V, Daia C, Firsov FC, Oprea M, Spinu A, Popescu C, Ionescu A, Busnati S. Cellular and molecular targets for non-invasive, non-pharmacological therapeutic/rehabilitative interventions in acute ischemic stroke. *International Journal of Molecular Sciences*. 2022 Jan 14;23(2):907.
- Suprapto S, Mulat TC, Asmi AS, Muridah M. Application of range of motion in stroke patients with impaired physical mobility. *Jurnal Edukasi Ilmiah Kesehatan*. 2023 Aug 31;1(2):43-8.
- Todhunter-Brown A, Sellers CE, Baer GD, Choo PL, Cowie J, Cheyne JD, Langhorne P, Brown J, Morris J, Campbell P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. *Cochrane Database of Systematic Reviews*. 2025(2).
- Zhou H, Kulick ER. Social support and depression among stroke patients: a topical review. *International Journal of Environmental*

Research and Public Health. 2023 Dec 8;20(24):7157.

15. Mead GE, Sposato LA, Sampaio Silva G, Yperzeele L, Wu S, Kutlubaev M, Cheyne J, Wahab K, Urrutia VC, Sharma VK, Sylaja PN. A systematic review and synthesis of global stroke guidelines on behalf of the World Stroke Organization. *International Journal of Stroke*. 2023 Jun;18(5):499-531.
16. Lally J, Vaittinen A, McClelland G, Price CI, Shaw L, Ford GA, Flynn D, Exley C. Paramedic experiences of using an enhanced stroke assessment during a cluster randomised trial: a qualitative thematic analysis. *Emergency Medicine Journal*. 2020 Aug 1;37(8):480-5.
17. Kim KH, Jang SH. Effects of task-specific training after cognitive sensorimotor exercise on proprioception, spasticity, and gait speed in stroke patients: a randomized controlled study. *Medicina*. 2021 Oct 13;57(10):1098.
18. Mazidah Z, Yasin NM, Kristina SA. Analisis biaya penyakit stroke pasien jaminan kesehatan nasional di RSUD Blambangan Banyuwangi. *Jurnal Manajemen Dan Pelayanan Farmasi (Journal of Management and Pharmacy Practice)*. 2019;9(2):76-87.
19. Fernandes L, Santos D, Santos M, Rocha NP. How to improve emergency information systems to optimize the care of acute stroke.
20. Pérez-de la Cruz S. Influence of an aquatic therapy program on perceived pain, stress, and quality of life in chronic stroke patients: a randomized trial. *International journal of environmental research and public health*. 2020 Jul;17(13):4796.
21. Choi HS, Shin WS, Bang DH. Mirror therapy using gesture recognition for upper limb function, neck discomfort, and quality of life after chronic stroke: a single-blind randomized controlled trial. *Medical science monitor: international medical journal of experimental and clinical research*. 2019 May 3;25:3271.
22. San K, Suhartina S, Pratama IH, Mukhtar Z, Nasution CR, Silalahi TD, Purba AF. Family caregivers' experiences caring for stroke survivors: A phenomenological study. *Jurnal Prima Medika Sains*. 2024 Dec 29;6(2):136-44.
23. Mahalle S, Yahya N, Zailani FF. Psychological Issues on Family Caregivers of Stroke Patients in Brunei Darussalam: In the Era of Pandemic COVID-19. *Education Quarterly Reviews*. 2022;5(2):299-305.
24. Dewi NL, Wati NM, Jayanti DM, Lestari NK, Sudarma IN. Edukasi metode cerdik dan patuh modifikasi gaya hidup sehat dalam upaya mencegah kejadian stroke berulang. *Jurnal Empathy Pengabdian Kepada Masyarakat*. 2022 Aug 31:42-52.
25. Lim JH, Lee HS, Song CS. Home-based rehabilitation programs on postural balance, walking, and quality of life in patients with stroke: a single-blind, randomized controlled trial. *Medicine*. 2021 Sep 3;100(35):e27154.
26. Ko SH, Shin YI. Nutritional supplementation in stroke rehabilitation: a narrative review. *Brain & NeuroRehabilitation*. 2022 Mar 25;15(1):e3.
27. Hyun SJ, Lee J, Lee BH. The effects of sit-to-stand training combined with real-time visual feedback on strength, balance, gait ability, and quality of life in patients with stroke: a randomized controlled trial. *International journal of environmental research and public health*. 2021 Nov 21;18(22):12229.
28. Asmirajanti M, Azizah AH, Lusianah. Pemanfaatan teknologi kecerdasan buatan dalam sistem pendukung keputusan untuk peningkatan kualitas hidup pasien stroke. In: *Artificial Intelligence dan Kebijakan Inovatif untuk Kota Pintar*. 3rd ed. Jakarta: PT. Bina Cendikia Academy; 2024. p. 201-10.

This work is licensed under a Creative Commons Attribution